【领津环境技术】浅谈光催化,光催化剂

光催化是指在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,继而发生化学反应生成新的物质或变成引发热反应的中间化学产物。光催化剂是指在光的照射下,自身不起变化,却可以促进化学反应的物质。它利用光能转化成化学反应所需的能量,产生催化作用,使周围的氧气及水分子激发成极具氧化力的自由基或负离子。

光催化氧化分为均相光催化氧化和非均相光催化氧化。均相光催化氧化主要为UV/Fenton试剂法。Fenton试剂为Fe2+和H2O2的组合,其氧化机理为Fe2++H2O2→˙OH+OH-+Fe3+Fe3++H2O2→Fe2++˙HO2+H+,因此Fenton试剂在水处理中具有氧化和混凝两种作用,在黑暗中就能降解有机物,节省了设备投资,然而H2O2利用率不高,不能充分矿化有机物。当有光辐射(如紫外光)时,Fenton试剂氧化性显著提高。UV/Fenton法也叫光助Fenton法,是普通Fenton法与UV/H2O2两种系统的复合产物,降低Fe2+用量的同时保持H2O2较高的利用率,而UV和Fe2+对H2O2的催化分解存在协同效应,˙OH的生成速率远大于传统Fenton法和紫外催化分解H2O2速率的简单加和。因此UV/Fenton试剂法在处理难降解有机污染物时具有独特的优势,很有应用前景。

非均相光催化氧化技术主要为TiO2光催化氧化技术。自从日本学者Fujishima和Honda于1972年在半导体TiO2电极上发现了水的光催化分解作用,开辟了半导体光催化这一新领域。1977年,Yokota等发现TiO2在光照条件下对丙烯环氧化具有光催化活性,从而拓宽了光催化的应用范围,为有机物氧化反应提供了一条新的思路。此后世界范围内便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒、有机合成等方面的应用研究,半导体光催化技术受到全世界的广泛关注,并得到了快速发展,成为国际上做活跃的研究领域之一。

不同类型有机物的光催化降解

半导体光催化剂大多是n型半导体材料(当前以TiO2使用最广泛),具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。由于半导体的光吸收阈值与带隙具有公式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。在光照下,如果光子的能量大于半导体禁带宽度,其价带上的电子(e-)就会被激发到导带上,同时在价带上产生空穴(h+)。当存在合适的俘获剂、表面缺陷或者其他因素时,电子和空穴的复合得到抑制,就会在催化剂表面发生氧化—还原反应。价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,一般与表面吸附的H2O、O2反应生成˙OH和超氧离子O2-,能够把各种有机物直接氧化成CO2、H2O等无机小分子,电子也具有强还原性,可以还原吸附在其表面的物质。激发态的导带电子和价带空穴能重新合并,并产生热能或其他形式散发掉。

光催化氧化具有以下特点:

一、低温深度反应:光催化氧化适合在常温下将废臭气体完全氧化成无毒无害的物质,适合处理高浓度、气量大、稳定性强的有毒有害气体的废气处理。

二、有效净化彻底:通过光催化氧化可直接将空气中的废臭气体完全氧化成无毒无害的物质,不留二次污染。

三、绿色能源:光催化氧化利用人工紫外线灯管产生的真空波紫外光的同时可望利用太阳光作为能源来活化催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗,利用空气中的氧作为氧化剂,有效降解有毒有害废臭气体成为光催化氧化节约能源的最大特点。

四、氧化性强:半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化碳、六氯苯都能有效加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(OH-)和超氧离子自由基(O2-、O-),其氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。

五、广谱性:光催化氧化对从羟到羧酸的种类众多的有机物都有效,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,只要经过一定时间的反应便可达到完全净化。

六、寿命长:理论上,光催化剂的寿命是无限长的,无需更换。

[换行]

光催化是指在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,继而发生化学反应生成新的物质或变成引发热反应的中间化学产物。光催化剂是指在光的照射下,自身不起变化,却可以促进化学反应的物质。它利用光能转化成化学反应所需的能量,产生催化作用,使周围的氧气及水分子激发成极具氧化力的自由基或负离子。

光催化氧化分为均相光催化氧化和非均相光催化氧化。均相光催化氧化主要为UV/Fenton试剂法。Fenton试剂为Fe2+和H2O2的组合,其氧化机理为Fe2++H2O2→˙OH+OH-+Fe3+Fe3++H2O2→Fe2++˙HO2+H+,因此Fenton试剂在水处理中具有氧化和混凝两种作用,在黑暗中就能降解有机物,节省了设备投资,然而H2O2利用率不高,不能充分矿化有机物。当有光辐射(如紫外光)时,Fenton试剂氧化性显著提高。UV/Fenton法也叫光助Fenton法,是普通Fenton法与UV/H2O2两种系统的复合产物,降低Fe2+用量的同时保持H2O2较高的利用率,而UV和Fe2+对H2O2的催化分解存在协同效应,˙OH的生成速率远大于传统Fenton法和紫外催化分解H2O2速率的简单加和。因此UV/Fenton试剂法在处理难降解有机污染物时具有独特的优势,很有应用前景。

非均相光催化氧化技术主要为TiO2光催化氧化技术。自从日本学者Fujishima和Honda于1972年在半导体TiO2电极上发现了水的光催化分解作用,开辟了半导体光催化这一新领域。1977年,Yokota等发现TiO2在光照条件下对丙烯环氧化具有光催化活性,从而拓宽了光催化的应用范围,为有机物氧化反应提供了一条新的思路。此后世界范围内便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒、有机合成等方面的应用研究,半导体光催化技术受到全世界的广泛关注,并得到了快速发展,成为国际上做活跃的研究领域之一。

不同类型有机物的光催化降解

半导体光催化剂大多是n型半导体材料(当前以TiO2使用最广泛),具有区别于金属或绝缘物质的特别的能带结构,即在价带和导带之间存在一个禁带。由于半导体的光吸收阈值与带隙具有公式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。在光照下,如果光子的能量大于半导体禁带宽度,其价带上的电子(e-)就会被激发到导带上,同时在价带上产生空穴(h+)。当存在合适的俘获剂、表面缺陷或者其他因素时,电子和空穴的复合得到抑制,就会在催化剂表面发生氧化—还原反应。价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,一般与表面吸附的H2O、O2反应生成˙OH和超氧离子O2-,能够把各种有机物直接氧化成CO2、H2O等无机小分子,电子也具有强还原性,可以还原吸附在其表面的物质。激发态的导带电子和价带空穴能重新合并,并产生热能或其他形式散发掉。

光催化氧化具有以下特点:

一、低温深度反应:光催化氧化适合在常温下将废臭气体完全氧化成无毒无害的物质,适合处理高浓度、气量大、稳定性强的有毒有害气体的废气处理。

二、有效净化彻底:通过光催化氧化可直接将空气中的废臭气体完全氧化成无毒无害的物质,不留二次污染。

三、绿色能源:光催化氧化利用人工紫外线灯管产生的真空波紫外光的同时可望利用太阳光作为能源来活化催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗,利用空气中的氧作为氧化剂,有效降解有毒有害废臭气体成为光催化氧化节约能源的最大特点。

四、氧化性强:半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化碳、六氯苯都能有效加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(OH-)和超氧离子自由基(O2-、O-),其氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。

五、广谱性:光催化氧化对从羟到羧酸的种类众多的有机物都有效,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,只要经过一定时间的反应便可达到完全净化。

六、寿命长:理论上,光催化剂的寿命是无限长的,无需更换。

[换行]

TiO2作为目前应用最为广泛的半导体光催化剂,有三种不同的晶体结构:锐钛矿结构、金红石结构和板钛矿结构。金红石结构最为稳定,从低温到熔点都不会发生晶相转变;锐钛矿结构次之,在室温下稳定;板钛矿结构则很少见。具有光催化作用的主要是锐钛矿结构和金红石结构,其中以锐钛矿结构的催化活性最高。锐钛矿型TiO2吸收波长小于387nm的光,金红石型TiO2吸收波长小于413nm的光。TiO2作为光催化剂具有以下特点:具有合适的半导体禁带宽度;具有良好的抗光腐蚀性和化学稳定性;价格低廉,原料来源丰富,成本低;光催化活性高(吸收紫外光性能强,禁带和导带之间的能隙大,光生电子的还原性和空穴的氧化性强);对很多有机污染物有较强的吸附作用。

为使光催化剂具有合适的形状、尺寸和机械强度以符合工业反应器的操作要求,光催化剂需要载体以支持活性组分,使化剂具有特定的物理性状。光催化剂载体要能改善所担载的物质的组织结构(如增加孔隙、表面积等),有利于光催化剂再生。良好的光催化剂载体应具有以下特点:良好的透光性;在不影响光催化活性的前提下,与TiO2颗粒间具有较强的结合力;比表面积大;对被降解的污染物有较强的吸附性;易于固液分离;有利于固—液传质;化学惰性和光稳定性;材料易得,价格低廉。

TiO2光催化剂载体种类

影响TiO2光催化效率的因素可以分为以下几方面:

一、催化剂

1、粒径大小:粒径越小,表面原子增加,光吸收效率越高,表面光生载流子浓度越高,光催化效率越高。因此纳米级的TiO2是一种高效的光催化剂。

2、表面积:晶格缺陷等其他因素相同时,表面积越大,反应物吸附量越大,活性越高,光催化效率越高。(具有大表面积的TiO2往往存在更多的复合中心,当复合过程其主要作用时,就会降低其光催化活性。)

3、混晶效应:目前研究发现高光催化活性的TiO2多数为锐钛矿型与金红石型的混合物。混晶可以有效促进锐钛矿型晶体中光生电子、空穴的电荷分离。

二、光源与光强

表面杂质和晶格缺陷使得TiO2在一个较大的波长范围里有光催化活性,因此光源选择比较灵活,如高压泵灯、中压泵灯、低压泵灯、紫外灯等,波长一般在250-400nm内。光强过强反而会因为存在中间氧化物在催化剂表面的竞争性复合而使得光催化效果不佳。

三、PH值

光强大于1×10-6Einstein˙L-1˙s-1,量子产率随PH值的增加而减小;光强小于1×10-8Einstein˙L-1˙s-1,随着PH值的增加,量子产率急剧增大。因此在选择光催化反应的最佳PH值时,要考虑光强大小的影响。

四、有机物浓度

r=қKC/(1+KC),r为反应速率;C为反应物浓度;K为表观吸附平衡常数;қ为发生于光催化剂表面活性位置的表面反应速率常数。低浓度时,公式可以简化为:r=қKC=K´C,即反应速率与浓度成正比,初始浓度越高,反应速率越大。

五、外加氧化剂

光催化反应要有效地进行,需要减少光生电子和空穴的简单复合,这可以通过使光生电子、光生空穴或两者被不同的基元捕获来实现。氧化剂是有效的导带电子捕获剂,可以有效地捕获光生电子而使电子和空穴分离,达到提高光量子产率的目的。研究证明,光催化氧化的速率和效率在有O2、H2O2、过硫酸盐、高碘酸盐存在时明显提高。

六、盐

高氯酸、硝酸盐对光催化的速率基本没有影响;硫酸盐、氯化物、磷酸盐则因为它们很快被催化剂吸附而使得氧化速率下降了20%~70%;HCO3-是主要的˙OH清除剂,存在时能降低光催化的反应活性(HCO3-+˙OH→CO32-+H2O)。

七、反应温度

有研究表明,TiO2光催化降解苯酚时的起始反应速率随着温度的升高略有增加,在光强度较高时,这种现象尤为突出。

八、表面螯合物和共价作用的吸附物

通过金属氧化物在半导体表面的螯合作用,可以促进界面电子的转移,提高光催化氧化的效率。与TiO2表面光生电子共价连接的吸附物,也能提高光催化剂的活性。

尽管光催化技术在氧化降解有机污染物方面具有许多十分明显的优点,但在实际应用过程中还存在一些问题:光催化量子效率低,阳能利用率低,光催化剂的负载和分离回收问题、大型光催化反应器的设计问题等。因此今后的主要研究方向可能就在于设计高效的光催化反应器,提高光催化剂的催化活性也即提高光催化量子效率,提高对太阳光的利用率。

TiO2光催化技术对工业废水具有很强的处理能力,应用已较广泛。而利用TiO2作为光催化剂净化空气的技术在国外已逐渐成熟,但在国内的研究尚属方兴未艾。空气中大部分的有机污染物均可用TiO2光催化氧化去除,对烯烃、醇、酮、醛、芳香族化合物、有机酸、胺、有机复合物、三氯乙烯等气态有机物的光催化降解的量子效率是降解废水中同样有机物的10倍以上。国内对于TiO2光催化应用于废气处理还比较少见,但不难想象将来这项技术会有多么广阔的前景。

相关推荐

相关文章